{"CAREER_HUB": {"themeOptions": {"customTheme": {"varTheme": {"text-primary-color": "#0c509d", "button-primary-background-color": "#0c509d", "button-primary-text-color": "#ffffff", "button-primary-hover-background-color": "#5695cc", "button-primary-active-background-color": "#86bbe3"}}}, "employee": {"themeOptions": {"customTheme": {"varTheme": {"text-primary-color": "#000000", "button-primary-background-color": "#0c509d", "button-primary-text-color": "#ffffff", "button-primary-hover-background-color": "#5695cc", "button-primary-active-background-color": "#86bbe3", "text-secondary-color": "#000000"}}}}}, "TALENT_ACQUISITION": {"themeOptions": {"name": "blue", "customTheme": {"navbarTheme": {"textColor": "#ffffff", "textHoverColor": "#ffffff", "background": "#0c509d", "textHoverBackground": "rgba(0,0,0,0.15)"}}}}, "domain": "mlp.com", "configPath": "", "updatePath": "PCS>"}
false
{"domain": "mlp.com", "user": "", "isWillingToRelocate": false, "isUserAuthenticated": false, "isUserETXCandidate": false, "isDomainETX": false, "isDomainVeteran": false, "signUpConfig": {}, "getHelpButton": {}, "isCareerPlannerEnabled": false, "enableRememberMeOption": false, "isMyApplicationsEnabled": false, "showVeteranEmployerSignUp": false, "enableUserPreferenceSelection": false, "isUserPreferenceApplied": false, "candidate": {"enc_id": 0, "fullname": "", "firstname": "", "lastname": "", "skills": [], "email": "", "phone": "", "location": "", "filename": null, "starred_positions": [], "resumeUrl": "", "onboardingCompleted": false, "isUserInPcsIjp": false, "linkedinUrl": ""}, "branding": {"enableTalentNetwork": 1, "showJobId": 1, "homePageHeroBanner": {"opacity": 1, "image": "https://static.vscdn.net/images/careers/demo/mlp/1698434467::Eightfold+Banner+Portraiture_October+2023_2.jpg", "title": "Join Our Team", "hideInMobileView": true, "useImage": 1}, "navBar": {"color": "#ffffff", "opacity": 0, "image": "https://static.vscdn.net/images/careers/demo/mlp/1698436063::NavBar+Iamge", "link": "https://mlp.eightfold.ai/careers"}, "privacyLink": "https://www.mlp.com/privacy-policy/", "uploadResumeModal": {"title": "Welcome to {company_name}'s Career Center", "subtitle": "Streamline your search by uploading your resume to be matched with positions that best suit your qualifications.", "disclaimer": "**Uploading a resume is not a formal application for employment**"}, "customContent": {"positionSections": [{"body": "<center>When you become part of our Talent Community, we'll keep you posted about future job opportunities<br>that you may be a match for, as well as career-related events.<br><br><br><a class='nav-btn btn btn-sm header-search-btn' href='https://mlp.eightfold.ai/careers/join'>Join Talent Network</a></center>"}, {"body": "<a href=\" https://www.mlp.com/privacy-policy/\" target=\"_blank\"> <span style=\"text-align: center; display: block;color: #2C8CC9\"><u>Millennium Privacy Policy</u> </span></a>", "title": "Privacy Policy"}]}, "custom_style": {"css": ".nav-item a {\n color: #fff !important;\n}\n.all-positions-header h1{\n color: #ffff !important;\n}\n.refer .all-positions-header h1 {\n top: -90px !important;\n color: #ffff !important;\n}\n.refer .user-name {\n color: #fff !important;\n}\n\n.fixed-top {\n background-color: #000 !important;\n}\n\n.position-job-description .block__field--wide-rich-text {\n width: inherit !important;\n}\n\nelement.style {\n background: rgb(12, 80, 157) !important;\n color: rgb(11, 39, 66);\n opacity: 1;\n padding: 25px;\n display: flex;\n}\n\n.jointtalentNetDiv {\n text-indent: 25px;\n padding-left: 40%;\n margin-right: 5%;\n margin-left: auto;\n font-size: 20px;\nconsole.log('test');\n\n}\n\njoin-tn-link1 {\n font-size: 20px !important;\n display: inline-flex;\n}\n\na {\n cursor: pointer;\n color: #ffff;\n}\n\na:hover, a:focus {\n color: #ffff;\n text-decoration: underline;\n}\n\n.get-matched-button {\n background-color: #0c509d !important;\n border: 1px solid;\n border-color: #0c509d !important;\n bottom: 4px;\n color: #fff !important;\n font-size: 13px;\n height: 35px;\n line-height: 0;\n margin-bottom: -6px;\n margin-left: 20px;\n min-width: 115px !important;\n position: relative;\n}\n\n.go-button {\n background: rgba(0,0,0,0);\n border: 1px solid #0c509d;\n border-radius: 5px;\n color: #0c509d;\n margin-right: 10px;\n padding-bottom: 7px;\n padding-left: 10px;\n padding-right: 10px;\n padding-top: 7px;\n}\n\n.btn-secondary, .btn-secondary:hover, .btn-secondary:focus, .btn-secondary:active, .btn-secondary.active, .open .dropdown-toggle.btn-secondary, .btn-secondary:active:focus, .btn-secondary:active:hover, .btn-secondary.active:hover, .btn-secondary.active:focus {\n color: #0c509d !important;\n background-color: #ffffff !important;\n font-weight: 600;\n border-color: #0c509d !important;\n box-shadow: 0 1px 2px 0 transparent;\n}\n\n.btn-primary, .btn-primary:hover, .btn-primary:focus, .btn-primary:active, .btn-primary.active, .open .dropdown-toggle.btn-primary, .btn-primary:active:focus, .btn-primary:active:hover, .btn-primary.active:hover, .btn-primary.active:focus {\n color: #ffffff !important;\n background-color: #0c509d !important;\n border-color: #0c509d !important;\n font-weight: 600;\n box-shadow: 0 1px 2px 0 rgb(0 0 0 / 8%);\n}\n\nentity-details {\n \n margin: 10px 0px 0 0;\n}\n\n.apply-item-v1 .apply-item {\n margin-left: -15px;\n margin-right: -15px;\n}\n\n.apply-item.apply-item-datepicker .row {\n margin: 0;\n}\n\n\n\n.header-search-btn{margin-top:0px !important;padding:9px 18px !important;background-color:#0C509D;color:white;border-radius:2px !important;fill:#ffffff;font-weight:600;font-size:16px !important;border:none;max-width:fit-content !important}.bar1,.bar2,.bar3{width:24px;height:2px;background-color:#FFFFFF;margin:5px 0;transition:0.4s;}.change .bar1{-webkit-transform:rotate(-45deg) translate(-2px, 2px);transform:rotate(-45deg) translate(-2px, 2px);}.change .bar2{opacity:0;}.change .bar3{-webkit-transform:rotate(45deg) translate(-8px, -8px);transform:rotate(45deg) translate(-8px, -8px);}.header-search-btn:hover{color:#FFFFFF}"}, "page_image": "", "max_applications_refer": 0, "custom_html": {"header": "<nav style=\"background: rgb(12, 80, 157); color: rgb(11, 39, 66); opacity: 1; padding:25px; display:flex;\"><a class=\"skip-main-header\" href=\"#main-container\">Skip to main content</a><a class=\"\" href=\"https://app.eightfold.ai/careers?domain=mlp.com\" style=\"color: rgb(11, 39, 66);\"><img src=\"https://static.vscdn.net/images/careers/demo/mlp/1698436063::NavBar+Iamge\" width=\"auto\" height=\"30\" alt=\"mlp-logo\"></a><div class=\"jointtalentNetDiv\" ><div class=\"join-tn-link1\" style=\"float: right; display:flex;\"><a href=\"/careers/join?domain=mlp.com\" target=\"_blank\"> Join Talent Network</a> </div></div></nav>"}, "talent_form_mandatory_fields": ["resume"], "defaultState": {"pymww": false}, "mapConfig": {"enabled": true}, "i18n_overrides_master": {"customContent": {"en": {"k1": "When you become part of our Talent Community, we'll keep you posted about future job opportunities<br>that you may be a match for, as well as career-related events.", "k2": "Join Talent Network"}}}, "privacy": {"button": "Confirm", "title": "Data Privacy Agreement", "text": "Please confirm, you agree to the <a href=\"https://www.mlp.com/privacy-policy/\" target=\"_blank\" style=\"color: #2c8cc9\">Millennium Privacy Policy</a>."}, "hideJobCart": true, "hideSearchPanelHeader": true, "job_page_title": "Careers at Millennium", "page_title": "Careers at Millennium", "page_description": "Careers at Millennium", "recaptcha_enabled": 1, "companyName": "Millennium", "showLoggedOutNotificationsPrivacyPolicy": false}, "positions": [{"id": 755933621179, "name": "Senior C# Developer", "location": "New York, New York, United States of America", "locations": ["New York, New York, United States of America"], "hot": 0, "department": "Trading", "business_unit": "Unknown", "t_update": 1701409527, "t_create": 1701129600, "ats_job_id": "REQ-19694", "display_job_id": "REQ-19694", "type": "ATS", "id_locale": "REQ-19694-en", "job_description": "Work jointly with portfolio managers, analysts, and quants capturing requirements and developing tactical and strategic solutions focusses on trading, financial computational and analytics ecosystem Balance speed of delivery with sound design and architecture practices to ensure high quality, performance, and maintainability Design and develop REST API driven distributed & services architecture oriented systems BS / MS in Computer Science or relevant discipline. 5-10 years' experience building real-time multi-threaded services and UI applications with C# and WPF Solid hands-on technical skills - C#, WPF/MVVM, Web API, SQL Server Experience with DevExpress WPF suite Experience with asynchronous development and real-time messaging (e.g., Solace) Backend server infrastructure - load balancing, failover, etc. Experience with Microsoft SQL Server, MongoDB, and Postgres databases. Has worked in an Agile and DevOps environment and familiar with methodologies including CI / CD pipeline for packaging and deploying artifacts. Strong communication, analytical & problem solving skills Market data APIs (e.g., Bloomberg), Excel VBA, Python UI development experience with JavaScript / React a plus. Knowledge & experience with Options asset type in addition to equities", "stars": 0.0, "medallionProgram": null, "location_flexibility": null, "work_location_option": null, "canonicalPositionUrl": "https://mlp.eightfold.ai/careers/job/755933621179", "isPrivate": false, "latlongs": "40.7127753,-74.0059728"}, {"id": 755933233633, "name": "Data Scientist", "location": "New York, New York, United States of America", "locations": ["New York, New York, United States of America"], "hot": 0, "department": "Trading", "business_unit": "Unknown", "t_update": 1701408498, "t_create": 1699401600, "ats_job_id": "REQ-19520", "display_job_id": "REQ-19520", "type": "ATS", "id_locale": "REQ-19520-en", "job_description": "Analyze, manage, and store vast amounts of datasets from market to alternative data vendors Work alongside the data sourcing team to identify new potential data products and vendors Develop data analysis tooling and libraries alongside the rest of the data science team BS, MS, or PhD degree in Statistics, Computer Science, Applied Mathematics, or related field. At least 2+ years of working experience within financial data science At least 2+ years of programming experience in Python Excellent communicator Proficient in writing SQL queries Hands on experience with ETL processes Experience in company fundamental financial metrics (e.g. revenue, cash flow, margin, etc.)", "stars": 0.0, "medallionProgram": null, "location_flexibility": null, "work_location_option": null, "canonicalPositionUrl": "https://mlp.eightfold.ai/careers/job/755933233633", "isPrivate": false, "latlongs": "40.7127753,-74.0059728"}, {"id": 755933116365, "name": "Trader/Analyst Intern", "location": "New York, New York, United States of America", "locations": ["New York, New York, United States of America", "Dallas, Texas, United States of America", "Guaynabo, Puerto Rico, United States of America"], "hot": 0, "department": "Trading", "business_unit": "Unknown", "t_update": 1701411781, "t_create": 1698624000, "ats_job_id": "REQ-19425", "display_job_id": "REQ-19425", "type": "ATS", "id_locale": "REQ-19425-en", "job_description": "Apply statistical, data science, and machine learning techniques to test investment ideas Collaborate with portfolio managers, quantitative researchers, and software engineers to deploy these investment ideas Analyze financial data and develop predictive models to support decision making within the team Collaborate with the team to identify opportunities for process improvement and innovation Are pursuing a degree in a technical or quantitative disciplines, like statistics, mathematics, physics, electrical engineering, or computer science Cumulative GPA of 3.7 and above required; excellent standardized test scores Demonstrated proficiency in at least C++ or Python Experience performing an in-depth research project examining real-world data Are an independent thinker who can creatively approach data analysis and communicate complex observations in a simple and intuitive manner You don't need a background in finance. If you've got the quantitative skills, we can teach you the financial aspects of the job.", "stars": 0.0, "medallionProgram": null, "location_flexibility": null, "work_location_option": null, "canonicalPositionUrl": "https://mlp.eightfold.ai/careers/job/755933116365", "isPrivate": false, "latlongs": "40.7127753,-74.0059728"}, {"id": 755930655710, "name": "Head of Risk Management", "location": "Dallas, Texas, United States of America", "locations": ["Dallas, Texas, United States of America"], "hot": 0, "department": "Trading", "business_unit": "Unknown", "t_update": 1701411962, "t_create": 1685404800, "ats_job_id": "REQ-18148", "display_job_id": "REQ-18148", "type": "ATS", "id_locale": "REQ-18148-en", "job_description": "Develop and enhance the framework for risk management monitoring and reporting. Design or enhance risk & pricing models & visualization tools dealing with large datasets. Research and implement new risk methodologies, and factor model development. Develop risk methodology and scenario analysis capabilities to enhance risk assessment in portfolios. Develop top down and bottom up portfolio risk reports to identify and monitor the major risks in portfolios. Develop trading strategies based on enhanced risk models. Advise portfolio managers on the risk characteristics of their portfolios. Perform quantitative analyses and provide recommendations to help formulate internal portfolio risk guidelines. Ability to deliver timely solutions to risk management issues within the firm. Master's degree or PhD level training in quantitative field, e.g. Engineering, Computer science, Mathematics, Finance or Physics. Extensive knowledge of various equity risk models and factor calculation methodologies. Professional experience (min 7Y) in Trading, Risk or Quant role (alpha research, portfolio optimization etc.) or trading environment generally. Strong coding skills required (Python, SQL) & experience in GUI development. Highly analytical individual with strong problem-solving skills. Excellent command of statistics, time series analysis, optimization. Experience enhancing equity risk factor models and developing new risk factors. Entrepreneurial inclination: ability to work alone and act as a project manager. Strong communication skills both written and verbal. Good team player - one who is able to prioritize in a fast moving, high pressure, constantly changing environment. Ability to work with Portfolio Managers and build smooth working relationships.", "stars": 0.0, "medallionProgram": null, "location_flexibility": null, "work_location_option": null, "canonicalPositionUrl": "https://mlp.eightfold.ai/careers/job/755930655710", "isPrivate": false, "latlongs": "32.7766642,-96.79698789999999"}, {"id": 755930383493, "name": "Software Engineer, Systematic Equities", "location": "New York, New York, United States of America", "locations": ["New York, New York, United States of America", "Dubai, United Arab Emirates"], "hot": 0, "department": "Trading", "business_unit": "Unknown", "t_update": 1701411921, "t_create": 1683763200, "ats_job_id": "REQ-17993", "display_job_id": "REQ-17993", "type": "ATS", "id_locale": "REQ-17993-en", "job_description": "Develop software engineering solutions for quantitative research and trading Build and maintain robust data pipelines and databases that ingest large amounts of data every day, while developing processes that validate the integrity of the data Helps with the design, implementation, and deployment of trading infrastructure Ensure the quality of the design and continuously improve performance, functionality, and stability of the system Collaborate with the Senior Portfolio Manager and other investment professionals in a transparent environment Bachelor's, Master's, or PhD degree in Computer Science or equivalent experience Exceptional programming skills (Python, C++) Attention to detail and strong communication skills 2+ years of experience in software engineering building complete applications Extensive experience in developing data processing/data ingestion, analytical pipelines, and relational databases Extensive experience in designing, building, and trouble-shooting large-scale distributed systems Demonstrated knowledge of and passion for dev ops, ci/cd, test-driven development", "stars": 0.0, "medallionProgram": null, "location_flexibility": null, "work_location_option": null, "canonicalPositionUrl": "https://mlp.eightfold.ai/careers/job/755930383493", "isPrivate": false, "latlongs": "40.7127753,-74.0059728"}, {"id": 755930337383, "name": "Research Analyst - Intern", "location": "Miami, Florida, United States of America", "locations": ["Miami, Florida, United States of America"], "hot": 0, "department": "Trading", "business_unit": "Unknown", "t_update": 1701409658, "t_create": 1680134400, "ats_job_id": "REQ-17500", "display_job_id": "REQ-17500", "type": "ATS", "id_locale": "REQ-17500-en", "job_description": "Conduct bottoms-up fundamental and data analyses of companies, business models, and industries Gather data to construct in-depth company financial models in Excel Participate in quarterly earnings calls and monitor material news events related to companies under coverage Identify and analyze relevant industry metrics Bachelor's degree or equivalent experience, preferably in finance, economics, engineering and/or computer science Passion for fundamental analysis and public markets investing Understanding of accounting/financial statements Excellent Excel skills Excellent analytical and quantitative skills, with strong attention to detail Strong written and oral communication skills", "stars": 0.0, "medallionProgram": null, "location_flexibility": null, "work_location_option": null, "canonicalPositionUrl": "https://mlp.eightfold.ai/careers/job/755930337383", "isPrivate": false, "latlongs": "25.7616798,-80.1917902"}, {"id": 755930336856, "name": "Business Development Analyst", "location": "New York, New York, United States of America", "locations": ["New York, New York, United States of America"], "hot": 0, "department": "Trading", "business_unit": "Unknown", "t_update": 1701409408, "t_create": 1673395200, "ats_job_id": "REQ-16501", "display_job_id": "REQ-16501", "type": "ATS", "id_locale": "REQ-16501-en", "job_description": "Work with senior members of the team to drive full cycle recruitment process Provide any helpful/relevant market intelligence derived through conversations with analyst talent to the PM Recruiting Team Develop and maintain a strong candidate pipeline across open hiring requisitions Buildout new competitor mapping and LinkedIn projects, and update/augment existing team infrastructure as directed by senior team members Create and update job descriptions, evaluate talent (alongside Due Diligence specialists), interview and zoom screen candidates, and compile interview feedback on an ad hoc basis as required Drive process improvements, and help integrate new strategies and practices related to recruitment and hiring of analysts Aid EAS, Analyst Due Diligence, and the firm's Investment Teams in better understanding market dynamics (compensation benchmarking, industry hiring trends, covenant agreement enforcement precedence, etc) Ideal candidate will have 2-5 yrs experience in a relevant role with an already built out large network of contacts in the industry Proven track record of being a tenacious cold caller LinkedIn expertise a pre-requisite Must have a four year degree from an accredited university Highly organized Experience working with a CRM and Salesforce preferred but not required", "stars": 0.0, "medallionProgram": null, "location_flexibility": null, "work_location_option": null, "canonicalPositionUrl": "https://mlp.eightfold.ai/careers/job/755930336856", "isPrivate": false, "latlongs": "40.7127753,-74.0059728"}, {"id": 755930923588, "name": "Commodities Quantitative Researcher, Systematic Global Macro", "location": "Baar, Zug, Switzerland", "locations": ["Baar, Zug, Switzerland", "New York, New York, United States of America", "London, United Kingdom"], "hot": 0, "department": "Trading", "business_unit": "Unknown", "t_update": 1701409488, "t_create": 1672531200, "ats_job_id": "REQ-18098", "display_job_id": "REQ-18098", "type": "ATS", "id_locale": "REQ-18098-en", "job_description": "Identify and onboard new global markets and datasets Analyze and manipulate large and diverse data sets for idea generation and alpha research with a focus on the commodities space Research and develop signals, leveraging a variety of market and fundamental datasets, to be deployed in systematic trading strategies Collaborate with the Senior Portfolio Manager and team in a transparent environment, engaging with the whole investment process from idea generation through execution with a focus on the Global Commodities space Strongly skilled in Python Experience programming in C is a plus Bachelor, Master's, or PhD degree in Computer Science, Engineering, Applied Mathematics, Statistics or related STEM field Excellent communication, analytical, and problem-solving skills 2-4 years of experience working in a quantitative research capacity with a focus on Ags, Energy, Metals, Fixed Income, FX, or Equity Index strategies Experience working with large and diverse data sets, specifically data sets associated with the commodity markets Commodities market experience modeling futures curves and/or cross-market relationships Experience in quantitative, econometrics, asset pricing, or macro sub-fields Experience with machine learning, statistical techniques and related libraries", "stars": 0.0, "medallionProgram": null, "location_flexibility": null, "work_location_option": null, "canonicalPositionUrl": "https://mlp.eightfold.ai/careers/job/755930923588", "isPrivate": false, "latlongs": "47.1953729,8.526087"}, {"id": 755931146264, "name": "Quantitative Researcher Summer Intern", "location": "New York, New York, United States of America", "locations": ["New York, New York, United States of America"], "hot": 0, "department": "Trading", "business_unit": "Unknown", "t_update": 1701412669, "t_create": 1672531200, "ats_job_id": "REQ-18409", "display_job_id": "REQ-18409", "type": "ATS", "id_locale": "REQ-18409-en", "job_description": "Explore and analyze a vast array of datasets, including both market data from asset trading and alternative data from other aspects of the real-world economy. Conduct literature reviews related with these datasets to develop economic insights and hypotheses for quantitative investment opportunities. Apply statistical and machine learning techniques to test and improve your investment ideas. Collaborate with portfolio managers, quantitative researchers, and software engineers to deploy these investment ideas and make an impact on the team's PnL. Are pursuing a master's degree in a technical or quantitative disciplines, like statistics, mathematics, physics, electrical engineering, or computer science with approximately one year remaining in your program and can potentially begin full-time employment in or around January 2025. Demonstrate proficiency in at least one programming language, e.g. C++ or Python. Performed an in-depth research project examining real-world data. Are an independent thinker who can creatively approach data analysis and communicate complex observations in a simple and intuitive manner. You don't need a background in finance. If you've got the quantitative skills, we can teach you the financial aspects of the job.", "stars": 0.0, "medallionProgram": null, "location_flexibility": null, "work_location_option": null, "canonicalPositionUrl": "https://mlp.eightfold.ai/careers/job/755931146264", "isPrivate": false, "latlongs": "40.7127753,-74.0059728"}, {"id": 755930336584, "name": "Quantitative Researcher, Systematic Equities", "location": "Irvine, California, United States of America", "locations": ["Irvine, California, United States of America"], "hot": 0, "department": "Trading", "business_unit": "Unknown", "t_update": 1701409284, "t_create": 1668556800, "ats_job_id": "REQ-16057", "display_job_id": "REQ-16057", "type": "ATS", "id_locale": "REQ-16057-en", "job_description": "Evaluation of various datasets for price prediction, portfolio construction, post trade analysis, or any combination of the three Research and develop short-term trading signals, using a large variety of market and fundamental datasets, to be deployed in systematic trading environment Assist with developing and extending the team's proprietary research platform Identify and onboard new global markets Collaborate with the SPM and trading group team members in a transparent environment, engaging with the whole investment process from idea generation through execution PhD in Computer Science, Statistics, Engineering, Applied Mathematics, Physics or related STEM field PhD or post-doctoral experience preferred, though will consider exceptional candidates with a Bachelor or Master's degree Strongly skilled in any of the following: C, C++, Java, Python, Fortran, Matlab or other similar languages Excellent communication, analytical and quantitative skills Demonstrated flexibility, curiosity, and willingness to acquire new skill sets, which may be displayed by completing a variety of projects in the past Experience working on research projects with highly uncertain results, which may be displayed through research experience acquired through PhD research or summer research for undergraduates Good publication record (high impact journals) for PhD and post-docs, either in a leading role or supporting role Completed internship within a systematic trading team at a buy-side firm Experience working with financial data Experience working with a shared codebase Leading author on a highly creative research project", "stars": 0.0, "medallionProgram": null, "location_flexibility": null, "work_location_option": null, "canonicalPositionUrl": "https://mlp.eightfold.ai/careers/job/755930336584", "isPrivate": false, "latlongs": "33.6845673,-117.8265049"}], "debug": {}, "count": 40, "countFilterByMatchScore": null, "location_user": "any", "location_used": "", "locationInsights": null, "showWizard": 1, "disableLocationSearchDropdown": false, "pcsAutocompleteLocationEnabled": 0, "recommended_star_threshold": 4.0, "mocTitle": null, "fuzzyResultsReturned": false, "query": {"query": "", "location": "", "department": [], "skill": [], "seniority": [], "pid": "", "Department": ["trading"], "Skills": [], "Experience": []}, "userTitles": [], "isThinProfile": false, "veteranProgramDetails": [], "enableTargetedResume": 0, "jobCardConfig": null, "facetDisplaySort": {"Department": "alpha_asc", "Skills": "alpha_asc", "Experience": "alpha_asc", "locations": "count_desc", "latlong": "count_desc"}, "facets": {"Department": {"branding and communications": 1, "business strategy": 1, "compliance": 3, "corporate services & real estate": 3, "execution services": 1, "finance": 4, "human resources": 8, "information technology": 89, "operations & middle office": 12, "risk management": 3, "trading": 40, "treasury": 3}, "Skills": {"API": 14, "Accounting": 5, "Active Directory": 6, "Algorithm": 8, "Algorithms": 8, "Android": 4, "Apache": 4, "Asset Management": 4, "Business Requirements": 4, "C++": 27, "CI/CD": 4, "Capital Markets": 4, "Citrix": 4, "Code": 4, "Collaboration": 4, "Communication": 18, "DHCP": 4, "DNS": 8, "Data Analysis": 10, "Data Science": 4, "Data Structures": 13, "Database": 12, "Datasets": 6, "Deployment": 19, "Derivatives": 16, "DevOps": 4, "Disaster Recovery": 4, "Distributed Systems": 6, "Docker": 15, "Documentation": 8, "Eclipse": 4, "Economics": 4, "Equities": 21, "Excel": 18, "Finance": 16, "Financial Markets": 7, "Financial Services": 15, "Fixed Income": 12, "Frameworks": 10, "Git": 21, "HTML": 7, "ITIL": 5, "Incident Management": 4, "Infrastructure": 8, "Java": 34, "JavaScript": 13, "Jenkins": 11, "Jira": 14, "Kubernetes": 4, "Linux": 36, "MATLAB": 4, "Machine Learning": 17, "Maintenance": 7, "Mathematics": 6, "Maven": 4, "Metrics": 10, "Microsoft Office": 6, "MongoDB": 5, "MySQL": 8, "Networking": 12, "Onboarding": 4, "Operations": 13, "Optimization": 4, "Perl": 4, "Portfolio": 5, "Portfolio Management": 4, "Pricing": 11, "Problem Solving": 5, "Programming": 8, "Project Management": 11, "Python": 53, "QA": 5, "Quality Assurance": 4, "Quantitative Analysis": 10, "Quantitative Research": 5, "REST": 7, "Regression Testing": 4, "Research": 5, "Risk Management": 14, "SDLC": 11, "SQL": 37, "Scripting": 9, "Scrum": 4, "Securities": 15, "Security": 6, "Shell Scripting": 5, "Statistics": 30, "Technical Support": 9, "Test Automation": 5, "Time Management": 4, "Trading": 36, "Troubleshooting": 6, "Unit Testing": 4, "Unix": 14, "VBA": 5, "VPN": 4, "Vmware": 6, "Workflow": 6, "XML": 6}, "Experience": {"entry level": 3, "experienced": 38, "experienced; junior": 1, "experienced; mid/senior": 21, "internship": 4, "junior": 6, "mid/senior": 32, "mid/senior; junior": 4}, "locations": {"New York, New York, United States of America": 44, "London, United Kingdom": 32, "Miami, Florida, United States of America": 23, "Singapore, Singapore": 21, "Hong Kong, Hong Kong": 15, "Bangalore, Karnataka, India": 14, "Dublin, Ireland": 9, "Paris, France": 8, "London, London, United Kingdom": 6, "Tel Aviv, Israel": 5, "Old Greenwich, Connecticut, United States of America": 4, "Tokyo, Tokyo, Japan": 3, "Dallas, Texas, United States of America": 2, "Dubai, United Arab Emirates": 2, "Shanghai, Shanghai, China": 2, "Baar, Zug, Switzerland": 1, "Central Hong Kong, Hong Kong": 1, "Chicago, Illinois, United States of America": 1, "Guaynabo, Puerto Rico, United States of America": 1, "Irvine, California, United States of America": 1, "Mumbai, Maharashtra, India": 1, "San Francisco, California, United States of America": 1, "Santa Monica, California, United States of America": 1, "Toronto, Ontario, Canada": 1, "West Palm Beach, Florida, United States of America": 1}, "latlong": {"40.7127753,-74.0059728": 44, "51.5072178,-0.1275862": 32, "25.7616798,-80.1917902": 23, "1.352083,103.819836": 21, "22.3193039,114.1693611": 15, "12.9715987,77.5945627": 14, "53.3498053,-6.2603097": 9, "48.856614,2.3522219": 8, "51.5073509,-0.1277583": 6, "32.0852999,34.78176759999999": 5, "41.0232624,-73.5652049": 4, "35.7090259,139.7319925": 3, "25.2048493,55.2707828": 2, "31.230416,121.473701": 2, "32.7766642,-96.79698789999999": 2, "18.4158123,-66.10651460000001": 1, "19.0759837,72.8776559": 1, "22.2799907,114.1587983": 1, "26.7153424,-80.0533746": 1, "33.6845673,-117.8265049": 1, "34.0194543,-118.4911912": 1, "37.7749295,-122.4194155": 1, "41.8781136,-87.6297982": 1, "43.653226,-79.3831843": 1, "47.1953729,8.526087": 1}}, "isSubQuery": true, "showBusinessUnitInPositionSidebar": false, "hideDepartment": null, "iframeImplementation": null, "pcsTextConfiguration": {}, "facetNoTitlecase": null, "skipCSSFacetCapitalization": false, "enableMapClustering": false, "readmoreInstructionEnabled": false, "candidateLogin": {}, "isHomePageLoad": true, "candidateBuildProfile": {}, "chatbot": false, "copilotConfig": {"enabled": false}, "enabledPersonalizedFeatures": {"recommendationFeedback": false, "tldr": true, "personalizationPreferences": false}, "installed_app_data": [], "enhancementsEnabled": false, "disableAutoScrollOnPositionSelect": false, "locationDistanceKmDefault": 100, "searchFiltersTranslationWhitelist": [], "customJobDescTranslationSkipList": [], "hamburgerMenuEnabled": false, "enableCandidateReferralFlow": false, "showBanner": false, "pcsBannerMessage": null, "locationRadiusConfig": {"showLocationRadius": false, "locationRadiusType": "km"}, "pcsApplyFormRouteEnabled": false, "isPcsBrandingApril2023Enabled": false, "allowedFileTypes": {}, "pcsOctupleMigration0Enabled": true, "pcsOctupleMigration1Enabled": false, "replaceUrlOnGoBack": true, "pcsRedesignedNuxEnabled": true, "userActivityTimeout": 86400000, "userActivityTimeoutEnabled": 1, "isLoggedInPcsEnabled": false, "sortByConfig": null, "searchBoxConfig": {}, "eeocFilterKeywords": ["veteran", "disability", "gender", "race", "citizen", "visa", "ethnicity"], "disableScrollLoadPositionSidebar": false, "locationFlexibilityFrontendEnabled": false, "workLocationOptionFrontendEnabled": false, "loggedOutNotificationsEnabled": false, "prepopulateApplyFormEnabled": false, "prepopulateSettings": {"prepopulateCheckboxText": "Save my answers for future applications", "showPrepopulateCheckbox": false}, "themeBuilderUser": null, "mandatoryFields": ["firstname", "lastname", "email", "phone"], "t3sEnabled": false, "applyFormV2Enabled": false, "loggedOutSavedSearchEnabled": false, "locationRadiusTypeToggleEnabled": false, "incompleteApplicationsEnabled": false, "incompleteApplicationConfig": {}, "fallbackPcsJdGate": false, "pcsBlindfoldLinkoffGate": false, "enableResumeCoach": false, "jobcartMultiApplicationModeGate": false, "isPcsEnabled": true, "phoneWithCountryCodeEnabled": false, "notificationSuggestVerificationToken": null, "cookiesAutoDisabled": false, "strictEmailValidationEnabled": true, "chatbotxConfig": {}, "pcsAccessibilityHomeEnabled": true, "pcsAccessibilityApplyFormEnabled": true, "showLanguageDropdown": false, "languages": [{"value": "en", "title": "English"}, {"value": "it", "title": "Italiano"}, {"value": "es", "title": "Espa\u00f1ol"}, {"value": "fr", "title": "Fran\u00e7ais"}, {"value": "pt", "title": "Portugu\u00eas"}, {"value": "nb", "title": "Norsk"}, {"value": "de", "title": "Deutsch"}, {"value": "ja", "title": "\u65e5\u672c\u8a9e"}, {"value": "ms", "title": "Bahasa melayu"}, {"value": "zh-CN", "title": "\u4e2d\u6587 (\u7b80\u4f53)"}, {"value": "zh-TW", "title": "\u4e2d\u6587 (\u7e41\u9ad4)"}, {"value": "ko", "title": "\ud55c\uad6d\uc5b4"}, {"value": "th", "title": "\u0e20\u0e32\u0e29\u0e32\u0e44\u0e17\u0e22"}, {"value": "nl", "title": "Nederlands"}, {"value": "pl", "title": "Polski"}, {"value": "uk", "title": "Y\u043a\u0440\u0430\u0457\u043d\u0441\u044c\u043a\u0430"}, {"value": "hr", "title": "Hrvatski"}, {"value": "el", "title": "\u0395\u03bb\u03bb\u03b7\u03bd\u03b9\u03ba\u03ac"}, {"value": "hu", "title": "Magyar"}, {"value": "cs", "title": "\u010de\u0161tina"}, {"value": "tr", "title": "T\u00fcrk\u00e7e"}, {"value": "ru", "title": "P\u0443\u0441\u0441\u043a\u0438\u0439"}, {"value": "ht", "title": "Haitian"}, {"value": "he", "title": "\u05e2\u05d1\u05e8\u05d9\u05ea"}, {"value": "pt-BR", "title": "Brazilian Portugu\u00eas"}, {"value": "da", "title": "Dansk"}, {"value": "fi", "title": "Suomi"}, {"value": "sv", "title": "Svenska"}, {"value": "fr-CA", "title": "Fran\u00e7ais (Canada)"}, {"value": "pt-PT", "title": "portugu\u00eas (Portugal)"}], "displayLanguage": "en", "requestLocation": false, "positionQnAEnabled": false, "singlePageCareersNavbarGate": false, "advancedOptionsA11yGate": false, "positionSidebarScrollResetGate": false}
.nav-item a {
color: #fff !important;
}
.all-positions-header h1{
color: #ffff !important;
}
.refer .all-positions-header h1 {
top: -90px !important;
color: #ffff !important;
}
.refer .user-name {
color: #fff !important;
}
.fixed-top {
background-color: #000 !important;
}
.position-job-description .block__field--wide-rich-text {
width: inherit !important;
}
element.style {
background: rgb(12, 80, 157) !important;
color: rgb(11, 39, 66);
opacity: 1;
padding: 25px;
display: flex;
}
.jointtalentNetDiv {
text-indent: 25px;
padding-left: 40%;
margin-right: 5%;
margin-left: auto;
font-size: 20px;
console.log('test');
}
join-tn-link1 {
font-size: 20px !important;
display: inline-flex;
}
a {
cursor: pointer;
color: #ffff;
}
a:hover, a:focus {
color: #ffff;
text-decoration: underline;
}
.get-matched-button {
background-color: #0c509d !important;
border: 1px solid;
border-color: #0c509d !important;
bottom: 4px;
color: #fff !important;
font-size: 13px;
height: 35px;
line-height: 0;
margin-bottom: -6px;
margin-left: 20px;
min-width: 115px !important;
position: relative;
}
.go-button {
background: rgba(0,0,0,0);
border: 1px solid #0c509d;
border-radius: 5px;
color: #0c509d;
margin-right: 10px;
padding-bottom: 7px;
padding-left: 10px;
padding-right: 10px;
padding-top: 7px;
}
.btn-secondary, .btn-secondary:hover, .btn-secondary:focus, .btn-secondary:active, .btn-secondary.active, .open .dropdown-toggle.btn-secondary, .btn-secondary:active:focus, .btn-secondary:active:hover, .btn-secondary.active:hover, .btn-secondary.active:focus {
color: #0c509d !important;
background-color: #ffffff !important;
font-weight: 600;
border-color: #0c509d !important;
box-shadow: 0 1px 2px 0 transparent;
}
.btn-primary, .btn-primary:hover, .btn-primary:focus, .btn-primary:active, .btn-primary.active, .open .dropdown-toggle.btn-primary, .btn-primary:active:focus, .btn-primary:active:hover, .btn-primary.active:hover, .btn-primary.active:focus {
color: #ffffff !important;
background-color: #0c509d !important;
border-color: #0c509d !important;
font-weight: 600;
box-shadow: 0 1px 2px 0 rgb(0 0 0 / 8%);
}
entity-details {
margin: 10px 0px 0 0;
}
.apply-item-v1 .apply-item {
margin-left: -15px;
margin-right: -15px;
}
.apply-item.apply-item-datepicker .row {
margin: 0;
}
.header-search-btn{margin-top:0px !important;padding:9px 18px !important;background-color:#0C509D;color:white;border-radius:2px !important;fill:#ffffff;font-weight:600;font-size:16px !important;border:none;max-width:fit-content !important}.bar1,.bar2,.bar3{width:24px;height:2px;background-color:#FFFFFF;margin:5px 0;transition:0.4s;}.change .bar1{-webkit-transform:rotate(-45deg) translate(-2px, 2px);transform:rotate(-45deg) translate(-2px, 2px);}.change .bar2{opacity:0;}.change .bar3{-webkit-transform:rotate(45deg) translate(-8px, -8px);transform:rotate(45deg) translate(-8px, -8px);}.header-search-btn:hover{color:#FFFFFF}